metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D12⋊5D4, C42⋊8D6, Dic6⋊5D4, (C2×D4)⋊2D6, C4⋊1D4⋊5S3, C4.55(S3×D4), D4⋊6D6⋊4C2, C3⋊3(D4⋊4D4), C12.35(C2×D4), (C6×D4)⋊2C22, (C4×C12)⋊14C22, C6.53C22≀C2, D12⋊6C22⋊3C2, C12.D4⋊6C2, C42⋊4S3⋊13C2, (C22×C6).23D4, C4.Dic3⋊7C22, C2.21(C23⋊2D6), (C2×C12).395C23, C4○D12.21C22, C23.11(C3⋊D4), (C3×C4⋊1D4)⋊4C2, (C2×C6).526(C2×D4), C22.33(C2×C3⋊D4), (C2×C4).118(C22×S3), SmallGroup(192,636)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C2×C4 — C4⋊1D4 |
Generators and relations for C42⋊8D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1, dad=a-1b-1, cbc-1=b-1, bd=db, dcd=c-1 >
Subgroups: 560 in 168 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, C3⋊C8, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C4.D4, C4≀C2, C4⋊1D4, C8⋊C22, 2+ 1+4, C4.Dic3, D4⋊S3, D4.S3, C4×C12, C4○D12, S3×D4, D4⋊2S3, C2×C3⋊D4, C6×D4, C6×D4, D4⋊4D4, C42⋊4S3, C12.D4, D12⋊6C22, C3×C4⋊1D4, D4⋊6D6, C42⋊8D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, S3×D4, C2×C3⋊D4, D4⋊4D4, C23⋊2D6, C42⋊8D6
Character table of C42⋊8D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 2 | 4 | 4 | 8 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 24 | 24 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -√-3 | √-3 | -1 | 0 | 0 | 1 | -√-3 | √-3 | √-3 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | √-3 | -√-3 | -1 | 0 | 0 | 1 | √-3 | -√-3 | -√-3 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -√-3 | √-3 | 1 | 0 | 0 | 1 | √-3 | -√-3 | -√-3 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | √-3 | -√-3 | 1 | 0 | 0 | 1 | -√-3 | √-3 | √-3 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | -2 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from S3×D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 2 | orthogonal lifted from D4⋊4D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-3 | 1-√-3 | -1+√-3 | 0 | 1+√-3 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-3 | 1+√-3 | -1-√-3 | 0 | 1-√-3 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | -1+√-3 | 1-√-3 | 0 | -1-√-3 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | -1-√-3 | 1+√-3 | 0 | -1+√-3 | complex faithful |
(1 14 17 4)(2 5 18 15)(3 16 13 6)
(1 4 17 14)(2 15 18 5)(3 6 13 16)(7 10 23 20)(8 21 24 11)(9 12 19 22)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 23)(14 22)(15 21)(16 20)(17 19)(18 24)
G:=sub<Sym(24)| (1,14,17,4)(2,5,18,15)(3,16,13,6), (1,4,17,14)(2,15,18,5)(3,6,13,16)(7,10,23,20)(8,21,24,11)(9,12,19,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,23)(14,22)(15,21)(16,20)(17,19)(18,24)>;
G:=Group( (1,14,17,4)(2,5,18,15)(3,16,13,6), (1,4,17,14)(2,15,18,5)(3,6,13,16)(7,10,23,20)(8,21,24,11)(9,12,19,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,23)(14,22)(15,21)(16,20)(17,19)(18,24) );
G=PermutationGroup([[(1,14,17,4),(2,5,18,15),(3,16,13,6)], [(1,4,17,14),(2,15,18,5),(3,6,13,16),(7,10,23,20),(8,21,24,11),(9,12,19,22)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,23),(14,22),(15,21),(16,20),(17,19),(18,24)]])
G:=TransitiveGroup(24,355);
Matrix representation of C42⋊8D6 ►in GL4(𝔽7) generated by
2 | 3 | 0 | 1 |
1 | 0 | 1 | 5 |
4 | 4 | 4 | 6 |
0 | 0 | 0 | 6 |
4 | 1 | 6 | 4 |
2 | 6 | 4 | 4 |
4 | 4 | 4 | 6 |
5 | 2 | 1 | 0 |
0 | 4 | 1 | 0 |
1 | 4 | 3 | 6 |
6 | 6 | 6 | 2 |
0 | 0 | 0 | 4 |
4 | 6 | 3 | 2 |
5 | 1 | 6 | 1 |
1 | 6 | 3 | 3 |
4 | 4 | 3 | 6 |
G:=sub<GL(4,GF(7))| [2,1,4,0,3,0,4,0,0,1,4,0,1,5,6,6],[4,2,4,5,1,6,4,2,6,4,4,1,4,4,6,0],[0,1,6,0,4,4,6,0,1,3,6,0,0,6,2,4],[4,5,1,4,6,1,6,4,3,6,3,3,2,1,3,6] >;
C42⋊8D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_8D_6
% in TeX
G:=Group("C4^2:8D6");
// GroupNames label
G:=SmallGroup(192,636);
// by ID
G=gap.SmallGroup(192,636);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,1123,570,297,136,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^-1,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export